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Abstract: When treated with 2-propanol in the presence of HCl, reduction of the C4-N double bond in 8-chloro-6-(2-
fluorophenyl)-1-methyl-6H-imidazo[1,5-a][1 4]benzodiazepine occurs. Deta are presented which indicate 2-propanol is the
reductant in a two-step mechanism.

The reduction of ketones and aldehydes by 2-propanol/aluminum isopropoxide (Meerwein-Ponndorf-
Verley reduction) is a well-established synthetic procedure.! Although aluminium alkoxides are the most widely
used catalysts, other Lewis acids have been used more recently.2 We report here a novel and unexpected
proton-catalyzed apparent Meerwein-Ponndorf-Verley type reduction of a C-N double bond.

We have found that treatment of 8-chloro-6-(2-fluorophenyl)-1-methyl-6H-imidazo[1,5-
a)[1,4]benzodiazepine (1)3 with a solution of concentrated HCI (2.4 equiv. HCl) in 2-propanol at reflux,
followed by basic aqueous work-up, yields a 2:1 mixture of 8-chloro-6-(2-fluorophenyl)-5,6-dihydro-1-methyl-
6H-imidazo[1,5-a]{1,4]benzodiazepine (2)* (42%) and 1,3-bis-[8-chloro-6-(2-fluorophenyl)-5,6-dihydro-1-
methyl-4H-imidazo[1,5-a][1,4]benzodiazepin-4-yl]-2-propanone (3) as'a mixture of two separable
diastereomers’ (21%) (Scheme 1). The remainder of the material balance was starting material and small
amounts of unidentified compounds. When 1 was subjected to standard Meerwein-Ponndorf-Veriey reduction
conditionsS (excess aluminum isopropoxide in 2-propanol at reflux or excess aluminum isopropoxide in xylenes
at reflux), the starting material was recovered. The latter result was expected, as there is little if any precedent
for reduction of imine double bonds under these conditions.

When 1 was treated with 2-propanol-ds instead of 2-propanol, under the same conditions, 2-d was
isolated. The position and extent of deuteration in 2-d were determined by comparison of the 400 MHz 1H
NMR spectra (CDCI3) of 2 and 2-d. Two one-proton doublets (J = 14.4 Hz) at 4.05 and 3.56 ppm were
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assigned to the protons on C4 in 2. In 2-d, both doublets had collapsed to singlets, while the intensity of the
signal at 4.05 ppm had decreased to one-third of its former value and the intensity of the signal at 3.56 had
decreased to two-thirds of its former value. No deuterium incorporation at other sites in 2-d was detected.

The simplest mechanism consistent with the observations would involve hydride transfer from 2-
propanol to N5-protonated 1, giving 2 and protonated acetone. However, AM1 calculations? suggest that such
a reaction would be endothermic by nearly 30 kcal/mol. Even considering the uncertainty in the calculations and
the possible influence of the solvent on the energetics, this figure makes the simple mechanism seem
improbable. One alternative that we currently favor involves attack of 2-propancl as a nucleophile at C38 of N5-
protonated 1, followed by a retro-ene fragmentation to 2 and acetone. Compound 3 is then formed as a double
Mannich condensation product between 1 and acetone. As shown in Scheme 1, such a mechanism would be
consistent with the results observed when 2-propanol-dg was used as solvent. Another alternative, which was
suggested by a referee, starts with attack of 2-propanol on C4 of N-5 protonated 1. Transfer of hydride to C4
with ejection of acetone would then complete the reduction.

To distinguish between these two altematives, AM1 calculations were performed to determine the
energetic feasiblity of each pathway. While addition of 2-propanol to C4 in both a syn and anti sense (with
respect to the fluorophenyl group) is slightly more favorable than addition to C3 (syn addition to C4 is
endothermic by 4.5 kcal/mol, anti addition is endothermic by 9.7 kcal/mol; the corresponding values for addition
to C3 are 6.0 and 12.0 kcal/mol), a comparison of the activation enthalpies for the elimination of acetone in the
syn C3 and syn C4 adducts (syrn C3 adduct = 31.2 kcal/mol; syn C4 adduct > 50 kcal/mc')l) shows that the
pathway involving initial addition to C3 is more likely.
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